Sobolev Gradients and the Ginzburg-Landau Functional

نویسندگان

  • J. W. Neuberger
  • Robert J. Renka
چکیده

We describe a Sobolev gradient method for finding minima of the Ginzburg–Landau functional for superconductivity. This method leads to a particularly simple algorithm which avoids consideration of the nonlinear boundary conditions associated with the Ginzburg–Landau equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy minimization using Sobolev gradients: application to phase separation and ordering

A common problem in physics and engineering is the calculation of the minima of energy functionals. The theory of Sobolev gradients provides an efficient method for seeking the critical points of such a functional. We apply the method to functionals describing coarse-grained Ginzburg-Landau models commonly used in pattern formation and ordering processes.

متن کامل

Minimization of the Ginzburg-Landau energy functional by a Sobolev gradient trust-region method

We describe a generalized Levenberg-Marquardt method for computing critical points of the Ginzburg-Landau energy functional which models superconductivity. The algorithm is a blend of a Newton iteration with a Sobolev gradient descent method, and is equivalent to a trust-region method in which the trustregion radius is defined by a Sobolev metric. Numerical test results demonstrate the method t...

متن کامل

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Partial Sobolev spaces and anisotropic smectic liquid crystals

The partial Sobolev spaces with respect to a vector field are introduced, and are used to studyminimization problems of the functionals which are degenerate in the sense that they do not have control on either the tangential part or the perpendicular part of the magnetic gradients. Based on these results we obtain the asymptotic behavior of the minimizers of the anisotropic Landau-de Gennes fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1998